Airport Collaborative Decision Making (A-CDM)

BRIEF DESCRIPTION
PROCESS DESCRIPTION
Düsseldorf Airport

Version: EN 2.0
Date: October 31, 2014
Table of contents:

1. General .. 4
 1.1 Purpose of the document .. 4
 1.2 General, definition and partners .. 4
 1.3 Objectives of Airport CDM ... 5
 1.4 Coordination with NMOC ... 5
 1.5 Main characteristics of the procedure ... 6
2. Procedure .. 7
 2.1 Procedure overview ... 7
 2.2 Correlation of flight information .. 8
 2.2.1 Airport Slot discrepancy .. 8
 2.2.2 Airport slot missing ... 8
 2.2.3 Points of contact ... 8
 2.2.4 Early DPI – data exchange with NMOC .. 9
 2.2.5 Target-DPI - data exchange with NMOC .. 10
 2.2.6 Flight Update Message (FUM) – data exchange with NMOC 11
 2.2.7 Potential Airport CDM Alerts .. 12
 2.3 Target Off-Block Time (TOBT) ... 13
 2.3.1 Automatically generated TOBT ... 14
 2.3.2 Person responsible for TOBT .. 15
 2.3.3 TOBT input and adjustment ... 15
 2.3.4 Deviations between TOBT and EOBT ... 16
 2.3.5 TOBT deletion ... 16
 2.3.6 Cancel-DPI – Data exchange with NMOC ... 16
 2.3.7 TOBT in case of a change of aircraft .. 16
 2.3.8 TOBT reporting channels .. 17
 2.4 Target Start-Up Approval Time - TSAT .. 18
 2.4.1 Publication of the TSAT ... 18
 2.4.2 TSAT reporting channels ... 19
 2.4.3 Target-DPI „Sequenced“ – data exchange with NMOC 20
 2.4.4 Example of TSAT and DPI generation .. 21
 2.4.5 Changes within the sequence ... 21
 2.5 De-icing .. 22
 2.6 Start-Up and Push Back ... 23
3. Common Situational Awareness / Information Sharing

3.1 Web-DUPLO

3.2 Display system of the NMOC – CHMI

3.2.1 NMOC CHMI flight list

3.2.2 NMOC CHMI flight data

3.2.3 NMOC CHMI flight data (Operational Log)

3.3 Airport CDM Alerting

3.3.1 Contact address and information

3.3.2 General aviation flights

3.3.3 Airport CDM alert messages

4. Publication

4.1 Aeronautical Information Publication (AIP)

4.2 Airport User Regulations (FBO)

5. Persons in charge of the process/points of contact

6. Abbreviations
1. General

1.1 Purpose of the document

This document describes the Airport Collaborative Decision Making (CDM) procedure at Düsseldorf Airport and is to be understood and used as a basis for the different partners, such as ground handling agents and Airline OCC.

Together with the publications about Airport CDM in the Aeronautical Information Publication Germany (AIP AD2 EDDL) and the airport user regulations FBO, this document is to ensure that Airport CDM at Düsseldorf Airport is handled in an optimal way in the interest of all partners.

1.2 General, definition and partners

Airport CDM is an operational overall process supporting an optimized turnaround process at Düsseldorf Airport. It covers the period of time between the estimated off-block time (EOBT) -3hrs and take-off and is a coherent process from flight planning (ATC flight plan) to landing and the subsequent turnaround process on the ground before the next take-off.

Airport CDM at Düsseldorf Airport is based on the European Airport CDM, the common specification ("Community Specification") for A-CDM and the “German initiative on the harmonisation of Airport CDM".
1.3 **Objectives of Airport CDM**

Airport CDM aims at optimally utilising the available capacities and operational resources at Düsseldorf Airport by increasing the efficiency of the individual steps of the turnaround process.

Airports can be integrated into the European ATM network through the exchange of reliable estimated arrival and departure times between Airport CDM and the Network Management Operations Centre (NMOC – former CFMU).

Airport CDM optimises operational cooperation between the following partners:

- Airport operator
- Airlines
- Handling agents
- Ground handling agents
- Air navigation service provider
- European air traffic flow management (NMOC)

1.4 **Coordination with NMOC**

Due to a fully automated data exchange with NMOC, landing and take-off times can be forecasted in a timely and reliable manner and/or precisely calculated take-off times (CTOT) can be given, based on local target take-off times.

The following messages are used:

- Flight update message, FUM
- Early departure planning information message, E-DPI
- Target departure planning information message, T-DPI target
- Target departure planning information message, T-DPI sequenced
- ATC departure planning information message, A-DPI
- Cancel departure planning information message, C-DPI

The basic procedures for cooperation between the airlines and/or DFS and NMOC remain the same.

Furthermore, all estimated departure times are automatically transmitted to NMOC during the turnaround process. In the case of delays caused by the airlines, the common CTOT allocation mechanisms apply. These allocation mechanisms are confirmed and/or refined via DPI messages. NMOC determines and allocates the CTOT on the basis of these estimated departure times (DPI).
1.5 Main characteristics of the procedure

The main characteristics of Airport CDM are:

➔ **Transparency of the process**
 Common situational awareness is guaranteed for all partners

➔ **Airport CDM is a common operational process**
 ATC flight plan / landing / turnaround process / take-off

➔ **Combination of the day of operations and schedule planning**
 Comparison and adjustment of the ATC flight plan, airport slot and airport flight data

➔ **Feasibility of the turnaround process**
 Combination, check and adjustment of linked arrivals and departures

➔ **Usage of Target Off-Block Time as the target time for „Aircraft Ready“**
 The TOBT is the essential contribution of the airline to the airport CDM process.
 \[\text{TOBT} = \text{Airline commitment}\]

➔ **Usage of the “Variable Taxi Times”**
 Calculation of all Target Times taking into account the parking position, runway in use and actual landing direction as well as the de-icing duration of remote de-icing. The individually calculated taxi time for an aircraft is called EXOT.
 \[\text{EXOT} = \text{Estimated Taxi Out Time}\]

➔ **Introduction of the „Target Start-Up Approval Time“**
 The TSAT resulting from the TOBT, EXOT, CTOT (if regulated) and the actual operational capacity, provides the basis for the pre-departure sequence and the moment at which the start-up approval can be expected.
 \[\text{TSAT} = \text{Airport CDM commitment}\]
 Start-up approvals/push back clearances are issued taking into account the TOBT and TSAT.

➔ **„Linking the airport into the network“**
 High-quality forecasts for inbound and outbound traffic by means of an automated data exchange with European ATFM (NMOC).
2. Procedure

2.1 Procedure overview

This chart depicts the scope of the Airport CDM procedure at Düsseldorf Airport from the time of ATC flight plan activation (EOBT - 3h) till take-off.

The orange arrows depict the data transfer with NMOC, the brown arrow shows the exchange of information via interfaces, dialogue systems, e-mail etc. with the relevant aircraft operator and/or handling agent with regard to potential adjustments which may become necessary.

The main aspects of the procedure are sub-divided and described as follows:

- Correlation of flight information – section 2.2
- Target Off-Block Time – section 2.3
- Target Start-Up Approval Time – section 2.4
- Aircraft De-icing – section 2.5
- Start Up and Push Back – section 2.6
2.2 Correlation of flight information

The Airport CDM procedure begins with the transmission of the ATC flight plan to the Airport CDM Portal (airport operator data base).

The ATC flight plan will be correlated with the flight data submitted to the airport as well as with the airport slot (SOBT) included therein. In particular, the focus is on:

- linking inbound and outbound flights
- comparing the airport slot (SOBT) for the outbound flight with the EOBT of the ATC flight plan

This comparison is usually made at the EOBT -3hrs. If the ATC flight plan is filed at a later stage, the commencement of the Airport CDM procedure is postponed to this time.

2.2.1 Airport Slot discrepancy

If the SOBT deviates from the estimated off-block time (EOBT) by more than 5 minutes, the contact person of the airline is advised by the A-CDM alerting to adjust the times accordingly.

2.2.2 Airport slot missing

If no SOBT is available at the time of the expected conduct of the flight, the contact person of the airline is advised by the A-CDM alerting. The flight cannot be sequenced without a SOBT and thus not handled or conducted.

2.2.3 Points of contact

The Airport Control Center of Düsseldorf Airport company (Flughafen Düsseldorf GmbH) is in charge of the activities concerning the correlation of flight information.
2.2.4 Early DPI – data exchange with NMOC

An early departure planning information message (E-DPI) is generated and transmitted to NMOC for flight plans validated in accordance with the sections mentioned above (airport slot available).

Flights with an E-DPI are marked in NMOC system as flights from a CDM airport and are then considered accordingly in further processing (e.g. optimised CTOT allocation in accordance with the local target times).

Example for DPI:

-TITLE DPI
-ARCID DLH8RP
-DPISTATUS z.B. EARLY / TARGET / ATC
-ADEP EDDL
-ADES EDDM
-EOBT 0955
-EOBD 110229
-TAXITIME 0013
-TTOT 1008
-SOBT 0955
-SID DODEN4T
-ARCTYP A320
-REG DAIPU
-DEPSTATUS
-IFPLID AA123456789
-ORIGIN-NETWORKTYPE AFTN-FAC EDDLYDYX
2.2.5 Target-DPI - data exchange with NMOC

As a rule, a T-DPI with the status "Target" is generated two hours before the EOBT for all flights for which an E-DPI has been generated. The T-DPI is transmitted to NMOC in the same way as the E-DPI.

The T-DPI is used to transmit a Target Take-Off Time (TTOT) to NMOC. The T-DPI opens a so-called “slot adjustment window” within which the CTOT is adjusted to the relevant reported TTOT in the best possible manner.

If the TTOT is changed by five minutes or more, if taxi times are adjusted by three minutes or more or if the SID, aircraft type or registration is changed, a new T-DPI is generated and transmitted to NMOC.
2.2.6 Flight Update Message (FUM) – data exchange with NMOC

Flight update messages (FUM) are received for flights to Düsseldorf Airport (inbound). The following operational events trigger the transmission of an FUM:

- estimated landing time (ELDT) minus 3 hours
- modification of the ELDT by 5 minutes or more
- changes to the ETFMS status, e.g. suspension of a flight

The FUM provides an ELDT in advance which allows the system to compare the inbound with the outbound flight plan, i.e. the EIBT with the EOBT.

If the calculated EIBT is later than the EOBT of the linked outbound flight plan, the contact person of the airline is notified accordingly. It is expected that the relevant times (delay message - DLA -) or the outbound flight plan (change of aircraft – CHG – or flight plan cancellation – CNL – and new flight plan) will be adjusted in a timely manner.

Furthermore, the ELDT of the FUM has strong effects on:

- optimum gate and position planning as well as further resources planning
- further use of resources (e.g. ground handling)
2.2.7 Potential Airport CDM Alerts

Potential Airport CDM alerts concerning the combination of different flight information include:

- CDM01 – No Airport Slot available or Slot already correlated
- CDM02 – SOBT vs. EOBT discrepancy
- CDM03 – Aircraft Type discrepancy
- CDM04 – Aircraft Registration discrepancy
- CDM05 – First Destination discrepancy
- CDM06 - not used
- CDM07 – EIBT + MTTT discrepancy with EOBT
- CDM07a – EIBT + MTTT discrepancy with TOBT
- CDM07b – Inbound Diversion
- CDM08 – EOBT Compliance Alert
- CDM09 – Boarding Not Started
- CDM10 – TOBT Rejected or Deleted
- CDM11 – Flight not compliant with TOBT / TSAT
- CDM12 - not used
- CDM13 – No ATC Flight Plan Available
- CDM14 – Automatic TOBT Generation not possible
- CDM15 – TOBT within night flying restriction
- CDM16 – TSAT within night flying restriction

Details on the Airport CDM alerts are given in section 3.3.
2.3 Target Off-Block Time (TOBT)

The TOBT is a point in time to be monitored and confirmed by the airline/handling agent at which the ground handling process is concluded, all aircraft doors are closed, all passenger boarding bridges have been removed from the aircraft and thus start-up approval and push back/taxi clearance can be received.

All ground handling processes, except for push back and remote de-icing, are based on the TOBT. The TOBT is used as the optimum time for coordination.

\[
\text{TOBT} = \text{forecast of "Aircraft ready"}
\]
2.3.1 Automatically generated TOBT

If flights are not subject to a direct turnaround the TOBT will be generated automatically at EOBT-90 minutes.

For all other flights the TOBT will be generated when the correlated inbound flight is on final approach (TMF-Ten Miles Final).

The earliest time for the publication of the automatically generated TOBT is EOBT-90 minutes.

The Minimum Turnaround Time (MTTT) is applied when the TOBT is generated. The MTTT is a time which is stored in the airport database and depends on the airline, kind of traffic (e.g. scheduled or non-scheduled) aircraft type and destination airport.

Important dependencies for the automatic initial TOBT generation:

Non-regulated flight (no CTOT):
- \[\text{TOBT} = \text{EOBT} \] if: \[\text{EIBT} + \text{MTTT} \leq \text{EOBT} \]
- \[\text{TOBT} = \text{EIBT} + \text{MTTT} \] if: \[\text{EIBT} + \text{MTTT} > \text{EOBT} \]

Regulated Flight (with CTOT):
Calculation above is applicable if:
- \[\text{TOBT} + \text{EXOT} \leq \text{CTOT} \]

If not (TOBT + EXOT > CTOT), the automatically generated TOBT would shift the CTOT. Therefore the automatically generated TOBT will not be used and published. The person in charge will be informed by mail (warning message) and asked to enter the TOBT at his discretion.

According to this procedure the aircraft operator is able to stick to his assigned CTOT by minimizing ground handling. When fixing the TOBT, the responsible unit is asked to apply a realistic period of time between TOBT and CTOT. Average taxi time at Düsseldorf is approximately 13 minutes.

If minimizing is not possible and TOBT + EXOT is beyond CTOT, a new CTOT will be requested automatically.
2.3.2 Person responsible for TOBT

Airlines have to ensure:

- the nomination of one person responsible for the TOBT
- the communication with the relevant airline OCC (ATC flight plan/person responsible for the EOBT) and
- the coordination of internal working procedures

The person responsible for the TOBT (generally the handling agent), the airline (for flights without handling agent) or the pilot-in-command (for general aviation flights without handling agent) is responsible for the correctness of and the adherence to the TOBT.

A wrong TOBT leads to disadvantages for further sequencing and/or CTOT allocation of regulated flights. Therefore, the TOBT has to be adjusted as early as possible.

2.3.3 TOBT input and adjustment

The following facts have to be taken into account for the input and/or adjustment of the TOBT:

- the earliest possible input of a TOBT is after it has been automatically generated
- the TOBT can be adjusted as often as necessary until the TSAT has been issued
- after the TSAT has been issued, the TOBT can only be corrected three times
- if the permitted number of TOBT inputs (three times) after the generation of the TSAT has been exceeded and an additional adjustment is necessary the TOBT must be deleted first. Thereafter entering a new TOBT is possible
- the entered TOBT has to be at least 5 minutes later than the actual time

As the TOBT is also the basis for further airport processes, adjustments of the TOBT (also if the process is completed more than five minutes in advance) are to be entered by the person responsible for the TOBT.

Shifting the TOBT close to a published TSAT does not change the TSAT. If there is a larger gap between TOBT and TSAT this period may be used for additional handling or delayed boarding. Be aware that any improvement of TSAT before revised TOBT is not possible.
2.3.4 Deviations between TOBT and EOBT
If the TOBT deviates from the EOBT of the ATC flight plan by more than 15 minutes, the airline has to initiate an additional delay message (DLA, CHG). This new EOBT has to be based on the last TOBT.

2.3.5 TOBT deletion
The TOBT has to be deleted in the following cases:
- the TOBT is unknown (e.g. technical problems with the aircraft)
- the permitted number of TOBT inputs (three times) after the generation of the TSAT has been exceeded

If the TOBT is deleted, the TSAT is automatically deleted as well.
If a new TOBT is known and the process shall continue, the person responsible for the TOBT has to enter a new TOBT.

2.3.6 Cancel-DPI – Data exchange with NMOC
As soon as the TOBT for a flight is deleted, a C-DPI message is transmitted to NMOC. The flight is no longer subject to the special handling process for flights from CDM airports. Then the CTOT is issued on the basis of the flight plan data available at NMOC until a new DPI (triggered by the new TOBT input) is available for the flight.

2.3.7 TOBT in case of a change of aircraft
If the aircraft is changed, a change message (CHG - type/registration) has to be sent and the TOBT remains in effect and is allocated to the new aircraft.
2.3.8 TOBT reporting channels

The TOBT is reported and/or adjusted by one of the following ways:

- CSA Tool of Sequence Planner (Web-DUPLO)
- Internal IT-System of Aircraft Operator / Ground Handling Agency (via interface)
- Calling the Airport Control Center of FDG by telephone in exceptional cases (Tel.: +49 211 421 51011)

For general aviation flights:

The responsible handling agent for a flight of the General Aviation has to adjust the TOBT if necessary after coordination with the aircraft operator or flight crew.

On all other flights the flight crew gets the opportunity for any adjustment by contacting a representative of Jet Aviation (Tel.: +49 211 421 7062) within the GAT Terminal. Out of duty hours coordination can be affected by contacting Air Traffic Control (Tel.: +49 211 4154 130 or 121,775 MHz)
2.4 Target Start-Up Approval Time - TSAT

The TSAT is the point in time calculated by the Airport CDM sequence planning system at which the start-up approval can be expected. The pre-departure sequence is based on the flights with a calculated TSAT.

2.4.1 Publication of the TSAT

The TSAT is published 40 minutes prior to the valid TOBT.

After TSAT has been published, the TOBT can only be corrected another three times to ensure a stable sequence and CTOT allocation. As a rule, the TSAT remains in effect if the TOBT has been changed, unless the new TOBT is later than the calculated TSAT.

The calculation of the TSAT is based on the following factors:

- TOBT
- CTOT (for regulated flights)
- Operational capacity at the airport
- Minimum Departure Interval (MDI)
- Variable taxi time
- Aircraft de-icing (only remote de-icing)
2.4.2 TSAT reporting channels

The TSAT is acknowledged by one of the following ways:

- CSA Tool of Sequence Planner (Web-DUPLO)
- Internal IT-System of Aircraft Operator / Ground Handling Agency (via interface)
- Via TSAT SMS-Service: To register a TSAT request, the user should send a text message (SMS) either with ICAO callsign or registration to the following telephone number: +49 176 888 22 118.
- Calling the Airport Control Center of FDG by telephone (only upon request, Tel.: +49 211 421 51011)

TSAT or changes of the TSAT will be reported by the person responsible for the TOBT to the flight crew/pilot.

For general aviation flights:

Responsibility rests with your aircraft handling agency. If you don't have any, please contact the representative of Jet Aviation at the GAT (Tel.: +49 211 421 7062), outside of operating hours contact ATC, or use the TSAT SMS-Service.

TSAT or changes of the TSAT will be reported by the person responsible for the TOBT to the Flight Crew/pilot.
2.4.3 Target-DPI „Sequenced“ – data exchange with NMOC

When the TSAT is generated, a T-DPI message with the status "sequenced" is transmitted to NMOC for unregulated flights (flights without a CTOT).

Flights for which a T-DPI message with the status "sequenced" has been transmitted have a particular status within the NMOC system.

The status "Target" (section 2.2.4) remains in effect for regulated flights. However, a T-DPI "Sequenced" can be manually generated by the control tower later on; otherwise the T-DPI for regulated flights is issued at the actual start-up time (ASAT).

The transmission of a "Ready" message is no longer required for regulated flights with the T-DPI "Sequenced" (an additional T-DPI can be generated manually if necessary).

The CTOT is adjusted to the local TTOT in the best possible manner.

If the TTOT is changed by five minutes or more, if taxi times are adjusted by three minutes or more or if the SID, aircraft type or registration is changed, a new T-DPI is generated and transmitted to NMOC.
2.4.4 Example of TSAT and DPI generation

After the TSAT has been calculated, flights within the area of responsibility of a person responsible for the TOBT can be switched. Possible candidates for a sequence change of each flight are shown in WEB-DUPLO. Switching must be coordinated and executed by ATC (Tel.: +49 211 4154 130).

2.4.5 Changes within the sequence
2.5 De-icing

Aircraft de-icing times must not be taken into account for the calculation of the TOBT, because de-icing request and the approximately de-icing period will be the basis for the calculation of the TSAT. Therefore de-icing should be requested as early as possible.

If de-icing is requested after start up, this de-icing request cannot be considered for the actual sequence. Revised TOBT will be calculated automatically and the flight will be resequenced.

In case of de-icing, a corresponding DPI message with an additional “de-icing” status will be sent to NMOC.
2.6 Start-Up and Push Back

Start-up and push back clearances are issued taking into account the TOBT and TSAT. The following rules shall apply:

- The aircraft has to be ready for start-up at TOBT
- In principle the timeframe for start-up approval and en-route clearance is TSAT +/- 5 minutes
 - The pilot should request start-up approval and en-route clearance TSAT +/- 5 minutes
 - Start-up request via DCL may be transmitted earlier; start-up clearance will be given based on actual conditions
 - Clearance Delivery issues the start-up approval and en-route clearance depending on TSAT and the current traffic situation
- The push back/taxi clearance has to be requested not later than five minutes after the start-up approval has been issued
- In case of delays Clearance Delivery has to be informed. Otherwise the TOBT will be deleted and has to be re-entered
2.6.1 Datalink Clearance - DCL

The published procedures and the time parameters published in the AIP AD 2 EDDL continue to apply to datalink departure clearances (DCL).

The TSAT (valid at time of delivery) is transmitted via CLD (departure clearance uplink message – issue of the start-up approval and en-route clearance by Clearance Delivery).

„Start-Up approved TSAT <hh:mm>“

If there is any change of TSAT after transmitting via CLD, the TSAT will not be updated by CLD. Responsibility for delivery to the flight crew remains with aircraft operator or person responsible for TOBT.

The push back/taxi clearance has to be requested at TSAT +/-5 minutes.
2.6.2 ATC-DPI (A-DPI) – data exchange with NMOC

At the Actual Off-Block Time an A-DPI will be sent to NMOC. The “slot adjustment window” is closed and the CTOT can no longer be changed automatically by NMOC.
3. Common Situational Awareness / Information Sharing

Transparency for all partners involved is the basis for conducting the Airport CDM process. IT interfaces, dialogue systems, alert messages, data exchange with NMOC, telephone coordination etc. ensure common situational awareness (CSA).

3.1 Web-DUPLO

The sequence of flights you are responsible for can be monitored in a browser of the Web-application for Sequence-Planning (Web-DUPLO).

Dependent to access permission the user has the possibility to get detailed flight information to assigned flights, to put in or change TOBT and to apply for de-icing.

The dialogue is available at Düsseldorf Airport (Ground Handling Agent), or remote (Airline OCC).

AO/GH can request the internet dialog “Web DUPLO” from FDG free of charge.
3.2 Display system of the NMOC – CHMI

Information on the Airport CDM data exchange with NMOC can be obtained in the different display options via the available NMOC reporting channels (CHMI).

Access to the NMOC CHMI can be requested from Eurocontrol online:

www.eurocontrol.int/

3.2.1 NMOC CHMI flight list

The flight list contains information on:

- TTOT
- transmitted DPI type
- IFPS inconsistencies
- EOBT inconsistencies
- „Ready status“
3.2.2 NMOC CHMI flight data
Details on the Airport CDM data exchange are given for selected individual flights from "Flight Data" (directly or from the flight list).

3.2.3 NMOC CHMI flight data (Operational Log)
All exchanged (transmitted and received) messages can be retraced in the "operational log" option of selected flights.
3.3 Airport CDM Alerting

Due to European harmonisation/standardisation, Airport CDM alerts bear the same code all over Europe. A further harmonisation of the A-CDM alerts via the “Initiative on the German harmonisation of Airport CDM” takes place to reach a common alerting procedure all over Germany.

3.3.1 Contact address and information

In order to receive Airport CDM alert messages, all airlines/handling agents have to provide a valid contact address (e-mail) for the airport operator FDG. It is also possible to provide several contact addresses for one airline (e.g. referring to a specific alert), if necessary.

In order to ensure optimal process handling and sequencing, it is highly recommended to provide this address (or several addresses) as well as information on necessary changes.

3.3.2 General aviation flights

This does not apply to general aviation flights without handling agents because the messages from the Airport CDM procedure are transmitted to the counter of Jet Aviation at the general aviation terminal (GAT).

3.3.3 Airport CDM alert messages

CDM01 “No Airport Slot available, or Slot already correlated”

DLH1AB/LH123
CDM01
EDDL
1002171200UTC
AIRPORT SLOT SOBT 1200 UTC NOT AVAILABLE OR SLOT ALREADY CORRELATED.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN EOBT 1100 OR REQUEST NEW AIRPORT SLOT.

NOTE: THE AIRPORT CDM PROCESS WILL BE SUSPENDED UNTIL RECEPTION OF YOUR RECTIFICATION.

CDM02 “SOBT vs. EOBT discrepancy”

DLH1AB/LH123
CDM02
1002171200UTC
EDDL
ATC FLIGHT PLAN EOBT 1200 IS NOT CONSISTENT WITH AIRPORT SLOT SOBT 1100 UTC.
IMMEDIATE UPDATE OF AIRPORT SLOT OR ATC FLIGHT PLAN EOBT NEEDED.

CDM03 “Aircraft Type discrepancy”
DLH1AB/LH123
CDM03
1002171200UTC
EDDL
AIRCRAFT TYPE INCONSISTENCY BETWEEN ATC FLIGHT PLAN <ARCTYP> AND AIRPORT DATABASE <TYP>.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.

NOTE: THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START-UP / PUSH BACK CLEARANCE WILL NOT BE GRANTED UNTIL DISCREPANCY IS RESOLVED.

CDM04 “Aircraft Registration discrepancy”
DLH1AB/LH123
CDM04
1002171200UTC
EDDL
AIRCRAFT REGISTRATION INCONSISTENCY BETWEEN ATC FLIGHT PLAN <REG> AND AIRPORT DATABASE <REG>.
IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.

NOTE: THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START-UP / PUSH BACK CLEARANCE WILL NOT BE GRANTED UNTIL DISCREPANCY IS RESOLVED.

CDM05 “First Destination discrepancy”
DLH1AB/LH123
CDM05
1002171200UTC
EDDL

DESTINATION INCONSISTENCY BETWEEN ATC FLIGHT PLAN <ADES> AND AIRPORT DATABASE <DEST>.

IMMEDIATE UPDATE OF ATC FLIGHT PLAN OR AIRPORT DATABASE NEEDED.

NOTE: PLEASE CLARIFY WITH AIRPORT TRAFFIC OPERATION CENTER TEL: +49 211 421 51011.

CDM07 “EIBT + MTTT discrepancy with EOBT”

DLH1AB/LH123
CDM07
1002171200UTC
EDDL

EIBT 1300 OF INBOUND DLH1AX/LH122 + MTTT 0030 IS NOT CONSISTENT WITH OUTBOUND ATC FLIGHT PLAN EOBT 1300.
CHECK OUTBOUND FLIGHT AND ATC FLIGHT PLAN AND UPDATE IF REQUIRED.

NOTE: THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE OUTBOUND FLIGHT MAYBE DELAYED.

CDM07a “EIBT + MTTT discrepancy with TOBT”

DLH1AB/LH123
CDM07a
1002171200UTC
EDDL

EIBT 1300 OF INBOUND DLH1AX/LH122 + MTTT 0030 IS NOT CONSISTENT WITH OUTBOUND TOBT 1300.
CHECK OUTBOUND FLIGHT AND TOBT AND UPDATE IF REQUIRED.

NOTE: THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE OUTBOUND FLIGHT MAYBE DELAYED.

CDM07b “Inbound Diversion”

DLH1AB/LH123
CDM07b
1002171200UTC
EDDL
INBOUND FLIGHT DLH3AW/LH3042 DIVERTED. TOBT <TIME> OF CORRESPONDING OUTBOUND DLH1AX/LH122 MAY NOT BE CORRECT.
CHECK OUTBOUND FLIGHT AND TOBT AND UPDATE IF REQUIRED.
NOTE: THIS IS AN ADVISORY ALERT ONLY AND THIS FLIGHT REQUIRES MONITORING AS THE OUTBOUND FLIGHT MAYBE DELAYED.

CDM08 “EOBT Compliance Alert”
DLH1AB/LH123
CDM08
1002171200UTC
EDDL
RECEIVED TOBT 1300 IS OUT OF ATC FLIGHT PLAN EOBT 1230 TOLERANCE WINDOW. IMMEDIATE UPDATE OF ATC FLIGHT PLAN EOBT NEEDED.

NOTE: EOBT AND TOBT SHALL NOT DIFFER BY MORE THAN 15 MINUTES. THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START-UP / PUSH BACK CLEARANCE MAY NOT BE GRANTED UNTIL DISCREPANCY IS RESOLVED.

CDM09 “Boarding Not Started”
DLH1AB/LH123
CDM09
1002171200UTC
EDDL
AT TOBT 1300 - 10 MINUTES BOARDING WAS NOT INITIATED.
UPDATE TOBT IF NEEDED.

NOTE: THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START UP / PUSH BACK CLEARANCE MAY NOT BE GRANTED.

CDM10 “TOBT Rejected or Deleted”
DLH1AB/LH123
CDM10
1002171200UTC
EDDL
TOBT 1300 WAS REJECTED OR DELETED.
NEW TOBT REQUIRED.

NOTE: THE AIRPORT CDM PROCESS IS SUSPENDED UNTIL RECEPTION OF YOUR RECTIFICATION.

CDM11 “Flight not compliant with TOBT / TSAT”

DLH1AB/LH123
CDM11
1002171200UTC
EDDL

FLIGHT NOT COMPLIANT WITH TOBT 1300 / TSAT 1300.
THIS FLIGHT WILL BE RE-SEQUENCED ON RECEIPT OF NEW TOBT.

NOTE: THE AIRPORT CDM PROCESS MAY BE SUSPENDED UNTIL RECEIPTION OF YOUR NEW TOBT.

CDM13 “No ATC Flight Plan Available”

NO ARCID/LH123
CDM13
1002171200UTC
EDDL

THE ATC FLIGHT PLAN IS NOT AVAILABLE.
SUBMISSION OF NEW ATC FLIGHT PLAN NEEDED.

NOTE: ATC FPL <ARCID> HAS BEEN CANCELLED AND THE AIRPORT CDM PROCESS IS SUSPENDED.

CDM14 “Automatic TOBT Generation not possible”

DLH1AB/LH123
CDM14
1002171200UTC
EDDL

THE TOBT COULD NOT BE AUTOMATICALLY GENERATED BECAUSE IT DOES NOT MATCH WITH THE ASSOCIATED CTOT 1330.
MANUAL INPUT OF TOBT REQUIRED.
NOTE: THE AIRPORT CDM PROCESS IS SUSPENDED until reception of your rectification.

CDM15 “TOBT within night flying restriction”
DLH1AB/LH123
CDM15
1002172000UTC
EDDL
TOBT <TIME> AT OR BEYOND 21:50 LOCAL.
BE AWARE OF NIGHT FLYING RESTRICTION.
NOTE: THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START-UP AND / OR TAKE-OFF WILL NOT BE GRANTED WITHOUT NIGHT FLYING PERMISSION.

CDM16 “TSAT within night flying restriction”
DLH1AB/LH123
CDM16
1002172000UTC
EDDL
TSAT <TIME> BEYOND 21:54 LOCAL.
BE AWARE OF NIGHT FLYING RESTRICTION.
NOTE: THE AIRPORT CDM PROCESS WILL NOT BE SUSPENDED BUT START-UP AND / OR TAKE-OFF WILL NOT BE GRANTED WITHOUT NIGHT FLYING PERMISSION.
4. Publication

4.1 Aeronautical Information Publication (AIP)

The Airport CDM procedure at Düsseldorf Airport will be published in the German Aeronautical Information Publication, volume II, AD2-EDDL, AD 2 "Local Traffic Regulations".

4.2 Airport User Regulations (FBO)

The Airport CDM procedure at Düsseldorf Airport will be published in the airport user regulations FBO.

5. Persons in charge of the process/points of contact

For questions concerning the procedure:
Flughafen Düsseldorf GmbH
Ms. Linda Gerritsen
Tel. +49 211 421 20643
airport-cdm@dus.com

For questions concerning the IT:
SITA Airport IT GmbH
Mr. Christian Schick
Tel. +49 211 421 55412
schick@dus.com
6. Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEP</td>
<td>Aerodrome of Departure</td>
</tr>
<tr>
<td>ADTS</td>
<td>Aerodrome of Destination</td>
</tr>
<tr>
<td>A-DPI</td>
<td>ATC-Departure Planning Information message</td>
</tr>
<tr>
<td>AIBT</td>
<td>Actual In-Block Time</td>
</tr>
<tr>
<td>ALDT</td>
<td>Actual Landing Time</td>
</tr>
<tr>
<td>AO</td>
<td>Aircraft Operator</td>
</tr>
<tr>
<td>AOBT</td>
<td>Actual Off-Block Time</td>
</tr>
<tr>
<td>ARCID</td>
<td>Aircraft Identification</td>
</tr>
<tr>
<td>ARCTYP</td>
<td>Aircraft Type</td>
</tr>
<tr>
<td>ARDT</td>
<td>Actual Ready Time</td>
</tr>
<tr>
<td>ATFM</td>
<td>Air Traffic Flow Management</td>
</tr>
<tr>
<td>ATOT</td>
<td>Actual Take-Off Time</td>
</tr>
<tr>
<td>BGB</td>
<td>Begin of Boarding</td>
</tr>
<tr>
<td>CDM</td>
<td>Collaborative Decision Making</td>
</tr>
<tr>
<td>C-DPI</td>
<td>Cancel - Departure Planning Information message</td>
</tr>
<tr>
<td>CFMU</td>
<td>Central Flow Management Unit (now NMOC)</td>
</tr>
<tr>
<td>CSA</td>
<td>Common Situational Awareness</td>
</tr>
<tr>
<td>CTOT</td>
<td>Calculated Take-Off Time (NMOC)</td>
</tr>
<tr>
<td>DCL</td>
<td>Datalink Departure Clearance</td>
</tr>
<tr>
<td>DEP</td>
<td>Departure</td>
</tr>
<tr>
<td>DIV</td>
<td>Diverted</td>
</tr>
<tr>
<td>DLA</td>
<td>Delay message</td>
</tr>
<tr>
<td>DPI</td>
<td>Departure Planning Information message</td>
</tr>
<tr>
<td>DUPLO</td>
<td>Düsseldorf Planning and Organizing</td>
</tr>
<tr>
<td>DUS</td>
<td>Düsseldorf Airport</td>
</tr>
<tr>
<td>ECZT</td>
<td>Estimated Commencement of De-icing Time</td>
</tr>
<tr>
<td>EDIT</td>
<td>Estimated De-icing Time</td>
</tr>
<tr>
<td>E-DPI</td>
<td>Early - Departure Planning Information message</td>
</tr>
<tr>
<td>EEZT</td>
<td>Estimated End of De-icing Time</td>
</tr>
<tr>
<td>EIBT</td>
<td>Estimated In-Block Time</td>
</tr>
<tr>
<td>ELDT</td>
<td>Estimated Landing Time</td>
</tr>
<tr>
<td>EOBT</td>
<td>Estimated Off-Block Time</td>
</tr>
<tr>
<td>ERR</td>
<td>Error Message</td>
</tr>
<tr>
<td>EXIT</td>
<td>Estimated Taxi-In Time</td>
</tr>
<tr>
<td>EXOT</td>
<td>Estimated Taxi-Out Time</td>
</tr>
<tr>
<td>FIDS</td>
<td>Flight Information Display System</td>
</tr>
<tr>
<td>FIR</td>
<td>Flight Information Region</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>FLS</td>
<td>Flight Suspension message</td>
</tr>
<tr>
<td>FPL</td>
<td>Filed ATC flight plan</td>
</tr>
<tr>
<td>GAT</td>
<td>General Air Traffic</td>
</tr>
<tr>
<td>GAT</td>
<td>General Aviation Terminal</td>
</tr>
<tr>
<td>GH</td>
<td>Groundhandler</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IFPS</td>
<td>Integrated Initial ATC flight plan Processing System</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>MAP</td>
<td>Missed Approach</td>
</tr>
<tr>
<td>MTTT</td>
<td>Minimum Turnaround Time</td>
</tr>
<tr>
<td>NMOC</td>
<td>Network Management Operations Centre (former CFMU)</td>
</tr>
<tr>
<td>OFB</td>
<td>Off-Block</td>
</tr>
<tr>
<td>ONB</td>
<td>On Block</td>
</tr>
<tr>
<td>POS</td>
<td>Parkingposition</td>
</tr>
<tr>
<td>RDY</td>
<td>Aircraft Ready</td>
</tr>
<tr>
<td>REG</td>
<td>Aircraft Registration</td>
</tr>
<tr>
<td>RWY</td>
<td>Runway</td>
</tr>
<tr>
<td>SEQ</td>
<td>Sequenced</td>
</tr>
<tr>
<td>SIBT</td>
<td>Scheduled In-Block Time</td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure Route</td>
</tr>
<tr>
<td>SITA</td>
<td>Société Internationale de Télécommunications Aéronautiques</td>
</tr>
<tr>
<td>SLC</td>
<td>Slot Cancellation Message</td>
</tr>
<tr>
<td>SOBT</td>
<td>Scheduled Off-Block Time</td>
</tr>
<tr>
<td>SRM</td>
<td>Slot Revision Message</td>
</tr>
<tr>
<td>STD</td>
<td>Scheduled Time of Departure</td>
</tr>
<tr>
<td>STW</td>
<td>Slot Tolerance Window</td>
</tr>
<tr>
<td>T-DPI</td>
<td>Target - Departure Planning Information message</td>
</tr>
<tr>
<td>TOB</td>
<td>Target Off-Block Time</td>
</tr>
<tr>
<td>TPF</td>
<td>Take-Off from outstation</td>
</tr>
<tr>
<td>TMF</td>
<td>Ten Miles Final</td>
</tr>
<tr>
<td>TOBT</td>
<td>Target Off-Block Time</td>
</tr>
<tr>
<td>TSAT</td>
<td>Target Start-Up Approval Time</td>
</tr>
<tr>
<td>TTOT</td>
<td>Target Take-Off Time</td>
</tr>
</tbody>
</table>